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Abstract

Plate vibrations due to turbulent boundary layer (TBL) excitation can depend strongly on the plate boundary

conditions, especially when the flow convects over the plate at speeds much slower than those of the bending waves in

the plate. The vibration response of a TBL excited baffled flat rectangular plate is analyzed with two sets of boundary

conditions: (a) all four edges clamped, and (b) three edges clamped and one edge free, with the flow direction

perpendicular to the free edge. A finite element model with discretization sufficient to resolve the convective

wavenumbers in the flow excitation field is used for the study. Three TBL wall pressure excitation models are applied to

the plates to represent the cross-spectra of the wall pressures: (i) a modified Corcos model, which includes all

wavenumber components of excitation; (ii) a low-wavenumber excitation model previously derived by one of the

authors, which only models the wavenumber-white region of the modified Corcos model; and (iii) an equivalent edge

force model which only models the convective component in the modified Corcos model. The TBL wall pressure

autospectrum is approximated using the model derived by Smolyakov and Tkachenko. The results obtained from

applying models (ii) and (iii) to the clamped and free edge plates are compared to those generated using model (i). For

the completely clamped boundary conditions, the low-wavenumber and Modified Corcos models yield nearly identical

vibration spectra, indicating that surface interactions dominate the response of fully clamped plates excited by TBL

pressures. For the free edge boundary condition, the vibrations predicted using the equivalent edge force and modified

Corcos models match very well, showing that edge interactions between TBL pressures and structural modes dominate

the vibrations of plates with free edges excited by TBL flow.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Vibrations of thin-walled structures excited by high-speed turbulent flow, such as the baffled flat plate shown in

Fig. 1, are caused by the wall pressure fields in the so-called ‘convective ridge’ region when flow speeds are equal to or

higher than that of the structural wave speed. Fig. 2 compares a model of the wavenumber content of boundary layer

wall pressures derived by Corcos (1963) and later modified by Hwang (1998) with the wavenumber transform of a

flexural mode shape in a simply supported plate (the plot only shows wavenumber content in the flow, or streamwise

direction). Fig. 2 corresponds to a case where the dominant modal wavenumber response (km ¼ mp=a; where m is the

mode order and a is the plate dimension) coincides with the dominant wavenumber range of the forcing function near

the convective ridge, where k ¼ kc ¼ o=Uc; or kUc=o ¼ 1; where o is radial frequency and Uc is the convective flow

speed. Strong structural acceptance of energy results in such a case. Fig. 3 shows a case where the wavenumber ratio

between structural flexural response and wall pressures is quite low. Such conditions can be achieved by either stiffening
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the structure, thereby reducing its wavenumbers with respect to those in the wall pressures, or by slowing down the flow.

In either case, the structure is excited mostly by the low-wavenumber content in the wall pressure field when km=kc is

small.
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Nomenclature

Ax; Ay incremental plate areas

a plate width

cm plate bending wavespeed at resonance frequency om

D plate flexural rigidity

f cyclic frequency

Gxx cross-power spectral density matrix between inputs x

Gyy cross-power spectral density matrix between outputs y

Hxy transfer function matrix between inputs x and outputs y

J1 Bessel function of the first kind

k wavenumber

k wavevector

kb bending wavenumber

km modal wavenumber

kc convective wavenumber

kp maximum wavenumber of integration

p pressure

Rðx1; x3; tÞ
space–time correlation of TBL wall pressure fluctuations

Red Reynolds number ¼ U0d=n
r separation distance between points on plate surface

Sm wavenumber sensitivity function

Uc convective flow velocity

U0 free stream velocity

xm; xn excitation points on plate

yi; yj response points on plate

Greek letters

a1; a3 decay constants for wall TBL pressure fluctuations in the streamwise (1) and cross-flow (3) directions

Gðx1; x3;oÞ
coherence function of TBL wall pressure fluctuations

d boundary layer thickness

d� boundary layer displacement thickness

Z structural loss factor

L3 spanwise integral length scale of TBL wall pressure fluctuations

n kinematic viscosity

x1; x3 separation distances

r density

t time delay

tw wall shear stress in boundary layer
#Fppðk;oÞwavenumber–frequency spectrum of TBL wall pressure fluctuations

Fppðxm; xn;oÞ
cross-power spectral density function of TBL wall pressure fluctuations

FFF ðxm;oÞ
cross-power spectral density function of TBL wall force/length fluctuations along edge

fppðoÞ autospectral density function of TBL wall pressure fluctuations

o radial frequency

om resonance frequency of mode m
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The flexural vibration response of structures excited by slow moving turbulent boundary layers may be split into two

regions (Chandiramani, 1977): the low-wavenumber region ðkUc=oo0:1Þ; where so-called ‘surface interaction’

dominates the structural acceptance of energy from the flow field, and the convective wavenumber region ðkUc=oB1:0Þ;
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Fig. 1. TBL-excited baffled flat plate, pressures applied at points xm and xu; normal velocity response at points yi and yj :

Fig. 2. TBL interaction with slow mode: top—m ¼ 3 simply supported mode shape and real part of streamwise coherence function of

TBL excitation (reference location at plate center); bottom—wavenumber transform of mode shape and coherence function.
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where so-called ‘edge interactions’ dominate the response. Chandiramani postulated that the more discontinuous the

response at an edge, the stronger the structural acceptance of energy, suggesting that structural regions with strong

near-field behavior, such as those near free edges, will be well excited at convective wavenumbers.

In situations like those in Fig. 3, the plate flexural response is very sensitive to its boundary conditions (Hwang and

Maidanik, 1990). Using analyses of the wall pressures and plate response in wavenumber space, Hwang and Maidanik

found that the response of plates with clamped and simply supported edges excited by slow moving TBL flow was due

almost entirely to acceptance of wall pressure energy in the low-wavenumber region, or surface interaction. When a

plate edge is left free, however, the side lobes of the modal response function are stronger, and accept significant energy

from the convective region. Fig. 4 compares the wavenumber transforms of mode shapes in simply supported, clamped,

and free beams to a wavenumber–frequency model of the wall pressures for low- speed TBL flow, where

jSmðkaÞj2 ¼
2ðkmaÞ2½1� ð�1Þm cosðkaÞ�

½ðkaÞ2 � ðkmaÞ2�2
ð1Þ

for simply supported boundary conditions,

jSmðkaÞj2 ¼
4

½1� ðkmaÞ�1�

ðkmaÞ2

ðkmaÞ2 þ ðkaÞ2

� �2
	

sin½ðkm � kÞa=2�
ðkm � kÞa

þ
sin½ðkm þ kÞa=2�

ðkm þ kÞa

� �2
ð2Þ
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Fig. 3. TBL interaction with fast mode: top—m ¼ 3 simply supported mode shape and real part of streamwise coherence function of

TBL excitation (reference location at plate center); bottom—wavenumber transform of mode shape and coherence function.
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for clamped boundary conditions, and

jSmðkaÞj2 ¼
2ðkaÞ2½1� ð�1Þm cosðkaÞ�

½ðkaÞ2 � ðkmaÞ2�2
ð3Þ

for free boundary conditions, where jSmðkaÞj2 is a dimensionless wavenumber sensitivity function for each mode type,

and where a is the beam length. (Note: the ‘free’ boundary condition case actually represents an edge condition where

transverse motion is allowed, but rotational motion is restricted.) Fig. 5 compares the products of the modal acceptance

functions with the TBL pressures. The free boundary conditions clearly increase the plate’s acceptance of energy near

the convective ridge and the simply supported and clamped boundary conditions result in very little excitation of the

plate by convective ridge pressures.

Since most structures encountered in practice are not conducive to wavenumber analysis, computing the response of

general systems to random inputs (such as TBL fluctuating wall pressures) must usually be conducted in physical space.

An analysis approach in physical space, based on the methods of Bendat and Piersol (1986) and Lin (1967) for solving

multiple-input -output problems, is discussed here. Finite element models are used to generate response functions and
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Fig. 4. Modal acceptance functions in wavenumber space for various boundary conditions along with real part of streamwise

coherence function of TBL excitation.

Fig. 5. Product of modal acceptance functions and TBL forcing functions for various boundary conditions.
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empirical models are used to approximate the random forcing function under a turbulent boundary layer field. A

validation exercise is conducted using measurements made at Purdue (Han et al., 1999).

The analysis approach will then be used to verify an approximate model proposed by Hwang (1998) that models only

the low-wavenumber content, or surface interaction region, of the forcing function field. The low-wavenumber forcing

function model, which reduces the required mesh density in the finite element model by ignoring the high-wavenumber

forcing function content, should work very well when applied to plates with clamped boundary conditions based on the

data shown in Figs. 4 and 5.

Since many practical structures excited by flow fields have free edges, the random analysis method is also used here to

attempt to confirm Chandiramani’s and Hwang and Maidanik’s contention that analyzing the response of structures

with free edges excited by boundary layer pressures requires including the energy in the convective wavenumbers in the

analysis. To that end, an approximate forcing function model is investigated that considers edge interaction effects for

TBL-excited plates with free edges.

Finally, infinite plate theory is used to generate mean-value response estimates that are compared to the finite plate

vibration predictions. The accuracy of the mean-value response estimates for plates with clamped and free edges is

discussed.

2. Analysis approach

Fig. 1 shows a baffled flat plate excited by TBL flow. Assuming the statistics of wall pressure fluctuations underneath

turbulent boundary layers are stationary, the power spectral density of the resulting vibration between any two degrees

of freedom (DOF) on the excited structure is

Guuðyi; yj ;oÞ ¼
Z Z

H�
u;F ðyi=xm;oÞFppðxm; xv;oÞHu;F ðyj=xu;oÞ dAm dAu; ð4Þ

where Guu is the displacement response cross-power spectral density between DOF yi and yj ; Hu;F ðyi=xm;oÞ and

Hu;F ðyj=xu;oÞ are frequency response functions relating displacements at response DOF yi and yj to forces applied at

loaded points xm and xu (the asterisk denotes the complex conjugate), and Fppðxm; xu;oÞ is the TBL pressure cross-power

spectral density function applied to all loaded points. Note that the response DOF may be in any direction. In this

paper, the response is taken to be normal to the plate surface. Also, pressure loads may theoretically be applied in any

direction, but are assumed normal to the plate here.

The frequency response functions H may be generated from a variety of sources, such as analytical or finite element

models, or from measured data. To accurately solve Eq. (4), both the spatial distributions of the response functions and

forcing function must be adequately resolved. As we shall see, situations such as those depicted in Fig. 3 will require

significant spatial resolution to resolve the small scales in the TBL wall forcing functions.

2.1. TBL wall pressure autospectrum and coherence models

Assuming a temporally stationary process, the cross-spectral density function Fppðxm; xu;oÞ may be separated into an

averaged autospectral density function %fppðoÞ and a coherence function Gðx1; x3;oÞ between the loaded points xm and

xu:

Fppðxm; xu;oÞ ¼ %fppðoÞGðx1; x3;oÞD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fppðxm;oÞfppðxu;oÞ

q
Gðx1; x3;oÞ; ð5Þ

where %fppðoÞ is approximated by the average of fppðxm;oÞ and fppðxu;oÞ and x1 and x3 are the streamwise and spanwise

separation distances between points xm and xu:
Many investigators have proposed empirical models of fppðoÞ and Gðx1; x3;oÞ: See for example Bull (1996), Chase

(1987) and Graham (1997). The autospectral density model proposed by Smolyakov and Tkachenko (1992) appears to

work well in practice, and is used here to approximate fppðoÞ:

fppðoÞE
t2wd

�

U0

� �
5:1

1þ 0:44ðod�=U0Þ
7=3

 !
; ð6Þ

where U0 is the free-stream flow velocity, d� is the boundary layer displacement thickness, and tw is the wall shear stress

which can be estimated for TBL flow with zero pressure gradient using the empirical relations RedE8U0d
�=n and

twE0:0225rU2
0=Re0:25d ; where Red is the boundary layer thickness Reynolds number, n is the kinematic viscosity, and r

is the fluid density.
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Note that fppðoÞ is a one-sided radial frequency spectrum, such that the mean square pressure fluctuation

/p2S ¼
R
N

0
fppðoÞ do: To convert fppðoÞ to a one-sided cyclic frequency spectral density fppð f Þ; Eq. (6) is multiplied

by 2p:
Gðx1; x3;oÞ may be viewed as a coherence function of the fluctuating wall pressures, such that

Gðx1; x3;oÞ ¼
1

2p

Z
N

�N

Rðx1; x3; tÞe
�iot dt; ð7Þ

where R represents the space–time correlation of the fluctuating pressure field (assumed homogeneous) and G depends

only on frequency and the separation vector ðx1; x3Þ between points xm and xu in the plane of the flow. Several

investigators have assumed that Gðx1; x3;oÞ may be separable in the streamwise and spanwise flow directions, including

Corcos (1963), who proposed the well-known model:

Gðx1; x3;oÞ ¼ Aðox1=UcÞBðox3=UcÞ; ð8Þ

where Uc is the average convection velocity of the flow, which is some fraction of the free stream velocity U0: The
convection velocity may be approximated (Bull, 1967) as a function of o; U0; and d� using the formula

UcDU0ð0:59þ 0:30e�0:89od�=U0 Þ: ð9Þ

Corcos postulated that the functions A and B may be represented as an exponentially decaying oscillating function in

the flow direction and a simple exponentially decaying function in the cross-flow direction:

Aðox1=UcÞ ¼ e�a1 jox1=Uc jeiox1=Uc ð10aÞ

and

Bðox3=UcÞ ¼ e�a3 jox3=Uc j; ð10bÞ

where a1 and a3 are decay constants in the streamwise and cross-flow directions, respectively.

Although Eq. (10) has been shown to work well for applications such as those depicted in Fig. 2, where the convective

ridge region dominates the excitation of the structures, Eq. (10) overestimates the contributions of the low-wavenumber

region of the TBL wall pressures. A modification to Eq. (10) has been proposed (Ko and Schloemer, 1989; Hwang,

1998) which distributes more of the TBL wall pressure energy near the convective ridge, thereby reducing the energy in

the low-wavenumber region (since the mean square pressure must remain constant). The modification changes the

function A to

Aðox1=UcÞ ¼ ð1þ a1jox1=UcjÞe�a1 jox1=Uc jeiox1=Uc : ð11Þ

2.2. Finite element analysis approach

The double integral in Eq. (4) may be solved using discretized numerical models, such as those generated using finite

element (FE) analyses. The response cross-power spectral density is approximated by a double summation over all

loaded points

Guuðyi; yj ;oÞD
XN

m¼1

XN

u¼1

H�
u;F ðyi=xm;oÞAxmFppðxm; xu;oÞAxuHu;F ðyj=xu;oÞ; ð12Þ

where Axm and Axu are the incremental surface areas of the loaded points.

Eq. (12) may be written in matrix form at a given frequency using the conventions of Bendat and Piersol (1986) and

Lin (1967) as

Gyy ¼ H�T
xy GxxHxy; ð13Þ

where Gyy is a matrix of output cross-power spectral densities, Gxx is a matrix of input cross-power spectral densities,

Hxy is a matrix of transfer functions relating response at the outputs to excitation at the inputs, x denote inputs and y

denote outputs. The superscript T indicates a matrix transpose. The diagonal entries in the matrices Gxx and Gyy are

auto-power spectral densities, and the off-diagonal entries represent cross-power spectral densities. An example of
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Eq. (13) for two outputs and N inputs is

Gyy ¼
Gy1y1 Gy1y2

Gy2y1 Gy2y2

" #
¼

H�
x1y1

H�
x2y1

? H�
xN y1

H�
x1y2

H�
x2y2

? H�
xN y2

" # Gx1x1
Gx1x2

? Gx1xN

Gx2x1
Gx2x2

? Gx2xN

^ ^ ^

GxN x1
GxNx2

? GxN xN

2
6664

3
7775

	

Hx1y1 Hx1y2

Hx2y1 Hx2y2

^ ^

HxN y1 HxN y2

2
6664

3
7775: ð14Þ

Note that the output points do not have to coincide with the input points. For example, the response of an object

inside a flow-excited exterior surface may be solved for using Eq. (14).

A FE model is used to generate the entries of the Hxy matrix (response/force) and the approximate TBL forcing

function models discussed earlier are used to generate the entries of the Gxx matrix, where

Gxmxu ðoÞ ¼ Axm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fppðxm;oÞfppðxu;oÞ

q
AxuGðx1; x3;oÞ; ð15Þ

and fppðoÞ is given by Eq. (6) and Gðx1; x3;oÞ is given by Eqs. (8), (10b), and (11).

Note that it is possible to estimate the total net force applied by the TBL pressure field to a structure by setting all

transfer function values H to unity in Eq. (12).

2.3. Practical considerations and approximate TBL forcing function models

An example of the streamwise component of the modified Corcos model is shown in Fig. 6, along with two proposed

approximate models for low-wavenumber surface forces and high-wavenumber edge forces. The TBL forcing function

may be viewed as a combination of low-wavenumber (surface interaction), high wavenumber (edge interaction), and

intermediate wavenumber contributions. For fixed boundary conditions, like simple or clamped supports, edge

interaction is very low since plate motion is extremely small near the supports. Free edges, however, are free to move

and will be well excited by edge forces.

In a TBL-excited FE model, many elements in the streamwise direction are typically required to resolve the

convective part of the forcing function (the eiox1=Uc term in Eqs. (10a) and (11)). Since at low km=kc (or Uc=cm)

ratios (less than about 0.1), where cm is the plate bending wave speed at the resonance frequency om of mode order m

and km ¼ om=cm; plates with clamped and simply supported boundary conditions do not respond well to the

convective forces (recall Figs. 3–5), so there is no need to include them in the model. A model including only the
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Fig. 6. Wavenumber regions where approximate surface (low-k) and edge force models apply.
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wavenumber- white component (surface interaction) of the TBL wavenumber–frequency spectrum is given by

#Fppðk;oÞ
fppðoÞ

¼ #Gðk-0;oÞD
1

k2
c

2a31
p2a3

ð16Þ

in wavenumber space. Using the transform definitions

#Gðk;oÞ ¼
1

ð2pÞ2

Z
N

�N

Z
Gðn;oÞe�ik
n dx1 dx3 ð17aÞ

and

Gðn;oÞ ¼
Z

N

�N

Z
#Gðk;oÞeik
n dk1 dk3 ð17bÞ

and by substituting Eq. (16) into Eq. (17b) and defining the vectors k and n as ðkr cos y; kr sin yÞ and ðx1; x3Þ so that

eik
n ¼ eix1kr cos yþix3kr sin y;

Gðn;oÞD
2a31
p2a3

� �
1

kc

� �2 Z kp

0

Z 2p

0

eix1kr cos yþix3kr sin ykr dy dkr; ð18Þ

where kp is the maximum wavenumber of the integration.

By letting r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x23

q
and employing the definition J0ðkrrÞ ¼ 1

2p

R 2p
0 eix1kr cos yþix3kr sin y dy (Courant and Hilbert,

1966), where J0 is the 0th order Bessel function:

Gðn;oÞD
2a31
p2a3

� �
1

kc

� �2

2p
Z kp

0

J0ðkrrÞkr dkr: ð19Þ

The integral in Eq. (19) may be evaluated using the definition (Wylie, 1960)
R

xJ0ðxÞ dx ¼ xJ1ðxÞ þ C; where x is krr

and dx is r dkr here. The integral must be pre-multiplied by r2=r2 to be evaluated, which leads to

1

r2

Z kp

0

J0ðkrrÞrkrr dkr ¼
krr

r2
J1ðkrrÞj

kp

0 ¼ kp

J1ðkprÞ
r

: ð20Þ

Multiplying the result by kp=kp and replacing r with jnj leads to the final definition for the low-wavenumber forcing

function in physical space, where

Gðn;oÞD
2a31
p2a3

� �
kp

kc

� �2

2p
J1ðkpjnjÞ

kpjnj

� �
; ð21Þ

so that

Fppðn;oÞD
2a31
p2a3

� �
kp

kc

� �2

%fppðoÞ 2p
J1ðkpjnjÞ

kpjnj

� �
; ð22Þ

in which n is the vector between points xm and xu; kp is the maximum wavenumber of excitation (typically set so as to

span the major lobe of the modal sensitivity function, usually at least twice km; but not so high as to require

unnecessarily fine discretization in the finite element mesh), kc is the convective wavenumber, and J1 is the Bessel

function of the first kind.

Since plates with free edges respond very well to the convective portion of the TBL wavenumber–frequency spectrum

(recall Fig. 5), even at low Uc=cm ratios, the forcing functions may sometimes be approximated with edge interaction

terms only. The edge force depends on the pressure levels and spatial coherence near the convective ridge ðUc=cmB1Þ
and the shape of the excited mode at the plate edge. The force/length spectrum acting on a free edge normal to the flow

(either upstream or downstream of the flow) may be approximated using methods from Hwang and Maidanik (1990) as

FF 0F 0 ðxm;oÞD
p
2

1

kc

� �2

%fppðoÞe�a3 jox3=Uc jm ; ð23Þ

where F 0 indicates force/length and the m subscript on the argument of the exponential indicates that the function is

evaluated at the reference location xm: A physical interpretation of Eq. (23) is to view the TBL loading as dominated by

a strip of partially coherent forces acting along the free edge. To compute the resulting velocity spectra on the plate, the

edge force/length spectrum must be integrated over the span of the excited edge:

Guuðyi; yj ;oÞ ¼
Z Z

H�
u;F ðyi=xm;oÞFF 0F 0 ðxm;oÞHu;F ðyj=xu;oÞ dLm dLu: ð24Þ
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Assuming the integration over the spanwise coherence portion of Eq. (23) returns the spanwise integral length scale

L3m (which is simply Uc=ða3oÞ at location xm), and considering only the autospectrum at response point yi; the
integration may be approximated using a summation over the loaded points

Guuðyi; yi;oÞD
XN

m¼1

jHu;F ðyi=xm;oÞj2FF 0F 0 ðxm;oÞ dLxmL3m : ð25Þ

By setting the H transfer functions equal to unity, the summation returns the total net applied edge force spectrum

FFF ðoÞD
p
2

1

kc

� �2

%fppðoÞL3L3 ð26Þ

assuming L3 is constant over the driven edge. The above approximations are valid for edges normal to a TBL flow field,

either upstream or downstream of the flow. The approximate effects of TBL excitation on free edges tangent to the flow

(pointing in the streamwise direction) are expected to be quite different, and are not addressed in this paper.

Both the low wavenumber and edge forcing function models do not require excessive discretization of FE models to

be used accurately. FE meshes excited with the low-wavenumber forcing function model in Eq. (22) need only resolve

the oscillations in the Bessel function with argument kpjnj: FE meshes excited with the approximate edge force/length

model in Eq. (23) need only resolve the decay in the spanwise coherence component of Eq. (10b). FE meshes excited by

either forcing function model must also represent adequately the mode shapes of interest, of course.

3. Numerical examples

FE models and measurements of a plate analyzed at Purdue University are used to verify the analysis approach and

check the validity of the empirical TBL forcing function models. Next, a thickened version of Purdue’s plate is used in a

series of analytic/FE studies to investigate the validity and usefulness of the proposed approximate forcing function

models for analyzing the vibrations of TBL-excited plates with clamped and free edges.

3.1. Verification of analysis approach—Purdue University flow excited plate

Measurements of vibration autospectra on a TBL-excited steel flat rectangular plate were made at Purdue University

(Han et al., 1999) and are compared to predictions made using the approach discussed here. The plate is 47 cm long in

the flow direction, 37 cm wide, and 0:159 cm thick and has a structural loss factor (where structural loss factor is

defined as twice the damping ratio, where damping ratio is the damping coefficient divided by the critical damping

coefficient) of about 0.005. The plate was flush mounted into the floor of a wind tunnel with screws to simulate clamped

boundary conditions along the edges. The flow speed was 44:7 m=s ð100 mphÞ; and d� was measured to be 2:4 cm: Plate
velocity autospectra were measured using a Scanning Laser Doppler Vibrometer (SLDV). Since the TBL behavior did

not vary significantly over the plate, the wall pressure field was assumed to be spatially homogeneous, with constant

values of a1 and a3 of 0.11 and 0.70.

In modelling the plate, enough elements were used to resolve both the structural modes and the convective term in the

forcing function. Since the flow speeds are slower than the bending wavespeeds in the plate, the convective wavelength

ðUc=f Þ dictates the element size required in the streamwise direction. At an analysis frequency of 600 Hz (the maximum

frequency considered) and an approximate convection speed of 38 m=s; the minimum convective wavelength is about

6 cm: Therefore, to maintain at least eight elements over a convective wavelength, 60 elements were used in the flow

direction.

Measured and predicted normal velocity autospectra at a point 15 cm from the plate’s left edge and 12 cm from its

bottom edge are shown in Fig. 7 and agree very well at frequencies above 150 Hz: The data does show that the two

lowest plate resonances do not vibrate quite as strongly in the experiment as they do in the FE model. This may be due

to slight differences between the actual and FE mode shapes (perhaps caused by the screws along the edge not

simulating exactly clamped boundary conditions), or perhaps by inhomogeneities in the TBL field at low frequencies. In

spite of the discrepancies at low frequencies, the majority of the data verifies the modelling approach, the TBL

autospectrum model, and the Modified Corcos coherence model.

The wavenumber sensitivities of the plate investigated by Purdue are not in the low-wavenumber region of the forcing

field, but are actually in an intermediate region (Uc=cm ¼ km=kcB0:3–0.8) where the wavenumber–frequency spectrum

is increasing between the low-wavenumber white region and the convective ridge region. Therefore, to illustrate the

accuracy of the approximate low-wavenumber (surface interaction) forcing function model, the plate is stiffened by
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increasing its thickness by a factor of ten (to 1:59 cm) to drive its modal wavenumber sensitivities into the low-

wavenumber range of the TBL pressure forcing function (this is done by the increase in bending wavespeed cB due to

the thickness increase). The conditions shown in Figs. 4 and 5 correspond to an m ¼ 3 mode in the stiffened plate near

its resonance frequency of 2000 Hz; and clearly show that the clamped boundary condition case should accept very little

energy from the convective ridge region of the TBL wall pressures.

The flow-excited thickened plate vibrations are analyzed for two boundary conditions, three flow speeds, and three

structural loss factors (no attempt is made to include the effects of radiation damping or aerodynamic damping, which

can be important for flow over free edges, in the predictions). The first boundary condition clamps the plate along all

edges, and is denoted the ‘CCCC’ case. The second frees the edge perpendicular to and downstream of the flow. Free

stream velocities of 44:7 m=s ð100 mphÞ; 89:4 m=s ð200 mphÞ and 178:8 m=s ð400 mphÞ were analyzed, along with

structural loss factors of 0.005, 0.05, and 0.5 to examine the effects of varying loss factor and Uc=cm (or km=kc) on the

accuracy of the approximate forcing function models. The point response 15 cm from the left edge and 12 cm from the

bottom edge of the plate is computed and compared for the various conditions.

The mesh discretization in the streamwise direction was increased from the Purdue case, since stiffening the plate

required increasing the maximum analysis frequency so that at least three to five resonance frequencies were spanned.

The new maximum analysis frequency is 2000 Hz; and required 120 elements in the streamwise direction, corresponding

to a minimum of five elements/wavelength. More elements would have been preferred, but the analysis times for such

models would have been longer than desired. Some aliasing of the convective terms in the forcing function may occur at

high frequencies and low speeds when exercising the full forcing function model, which points out the need for accurate,

approximate forcing function models that do not require such dense FE meshes.

3.2. Clamped boundary conditions on all edges (CCCC case)

Fig. 8 shows sample predicted point vibration autospectra for a structural loss factor of 0.05 and the three flow

speeds. Predictions made using the Modified Corcos and low-wavenumber forcing models are compared and show good

agreement over most frequencies. At low frequencies and high flow speeds, the low-wavenumber forcing function model

tends to underpredict the vibration levels, as it also does at high frequencies and low flow speeds. Fig. 9 compares

vibration autospectra predictions at a flow speed of 89:4 m=s and three structural loss factors. The low-wavenumber

forcing functions perform very well at all loss factors at this speed. Both figures show a discrepancy between the

vibrations predicted using the Modified Corcos and low-wavenumber forcing models at frequencies below the first

resonance. The discrepancy increases with increasing flow speed and decreasing frequency, and is due to the convective

ridge contribution to the forces, which is neglected in the low-wavenumber forcing model.

Figs. 10 and 11 compare the predicted vibration levels at the resonance frequencies of the first and third modes of the

plate as a function of flow speed and structural loss factor. The ratio of the convective velocity and the plate bending

wave speed ðUc=cmÞ are denoted for each flow speed in the plots. Recall that conditions similar to those depicted in

Fig. 2 correspond to a Uc=cm ratio of about 1, and conditions such as those shown in Fig. 3 correspond to a Uc=cm ratio

of less than 0.1.
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Fig. 7. Predicted and measured velocity spectra for Purdue plate at flow speed of 44:7 m=s: Thickened plate for approximate forcing

function investigations.
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For the first mode, the predicted vibration levels using both models agree very well at low flow speeds, but start to

diverge at higher flow speeds where Uc=cm starts to approach 1. This is expected since the low-wavenumber forcing

function model is wavenumber white, and does not model the convective ridge region of the actual forcing function, nor

the gradual increase in level between the low and convective wavenumber regions (the intermediate wavenumber

region). For the third mode, the predicted vibration levels agree well except at low wavespeed ratios. The discrepancies

at low Uc=cm ratios are almost certainly due to slight aliasing of the convective part of the Modified Corcos model due

to coarse discretization of the FE mesh at high frequencies and low flow speeds. The aliasing will artificially increase the

levels predicted using the Modified Corcos model.

3.3. Clamped boundary conditions on three edges, free boundary conditions on one edge (CCFC case)

Fig. 12 shows sample predicted point vibration autospectra for a structural loss factor of 0.05 and the three flow

speeds. Predictions made using the Modified Corcos and approximate edge forcing models are compared and show

good agreement over most frequencies. At frequencies below the first plate resonance, the approximate edge force

model underpredicts the vibration levels. The underpredictions worsen with increasing flow speed and decreasing

frequency—conditions which lead to large surface integral length scales. These conditions invalidate the assumptions

made when deriving the approximate edge force model, causing the approximate model to break down. At high

frequencies and low flow speeds, the approximate edge forcing function model tends to underpredict the vibration

levels. Fig. 13 compares vibration autospectra predictions made at a flow speed of 89:7 m=s and varying loss factors. As
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Fig. 8. Response of CCCC plate to Modified Corcos and approximate low-wavenumber (low-k) TBL forcing functions, structural loss

factor ¼ 0:05; variable flow speeds.

Velocity response of steel plate (47 cm x 37 cm x 1.59 cm),
CCCC boundary conditions, Gvv at (15 cm, 12 cm), Variable �

Flow in air at 89.7 m/s, Various Gff models, � *=.0024 m

1.E-19

1.E-18

1.E-17

1.E-16

1.E-15

1.E-14

1.E-13

1.E-12

1.E-11

1.E-10

1.E-09

0 500 1000 1500 2000

Frequency (Hz)

G
vv

 (
(m

/s
)^

2/
H

z)

Mod.Corcos - l.f.=0.005
low-k - l.f.=0.005
Mod.Corcos - l.f.=0.05
low-k - l.f.=0.05
Mod.Corcos - l.f.=0.5
low-k - l.f.=0.5

Uo
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89:7 m=s; variable loss factors.
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in Fig. 12, the edge forcing function tends to cause an underprediction in vibration levels that worsens with increasing

frequency.

Figs. 14 and 15 compare the predicted vibration levels at the resonance frequencies of the first and fifth modes of the

plate as a function of flow speed and structural loss factor. The ratio of the convective velocity and the plate bending

wave speed ðUc=cmÞ are denoted for each flow speed in the plots. In contrast to the CCCC case, the approximate edge

force model works best when Uc=cm approaches 1, since the edge force approximates pressures near the convective

ridge. When Uc=cm decreases, surface interaction terms become more important, and the edge force underpredicts the

vibration levels. Also, the underpredictions of the vibration levels using the approximate edge force model appear to

worsen with increasing structural loss factor. This is likely due to the increased contributions from non-resonant modes

to the vibration response, many of which are excited by the low-wavenumber region of the TBL flow, which is a surface

interaction effect.

The accuracy of the approximate edge force/length spectrum may be further assessed by comparing the net edge force

spectrum integrated over the free edge (Eq. (26)) to the net force estimated by integrating over the full Modified Corcos
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forcing function (result of Eq. (12) with transfer functions set to unity). The net force spectra for the full Modified

Corcos and the approximate edge force models are compared in Fig. 16 for the three analysis speeds. Since the

integration over the full model will return uncancelled forces over the edges both upstream and downstream of the flow,

the approximate edge force model, applied only on the downstream, or free edge, must be doubled for the comparison.

The integration of the full model shows some oscillations over frequency, especially at the highest speed, but the mean

level matches the approximate edge force level very well. At high frequencies, the total force from the approximate edge

force model is slightly lower than that of the full model, perhaps due to aliasing of the oscillations in the full model. The

aliasing is more prevalent at lower speeds and higher frequencies, as discussed previously.

3.4. Approximation of mean value velocity spectra using infinite plate theory

In some cases, the mean values of the plate velocity autospectra may be approximated by using frequency

response functions from infinite plate theory to populate the Hxy matrix used in the calculations. The admittance
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(velocity/pressure) of an infinite plate (in wavenumber space) is

#Hu;pðk;oÞ ¼
�io

Dðk4 � k4
Bð1þ iZÞÞ

; ð27Þ

where D is the plate flexural rigidity.

Comparing the plate admittance to the TBL forcing function at low Uc=cm conditions shows that virtually no energy

is accepted by the plate from the convective terms (see Fig. 17). The low-wavenumber–frequency limit of the TBL

forcing function, Fppðk-0;oÞ ¼ ð1=kcÞ
2ð2a31=ðp

2a3ÞÞfppðoÞ; may therefore be combined with Eq. (27) and integrated

over wavenumber space to calculate the forced response

GuuðoÞN ¼
p2o2

2D2k6
BZ

1

kc

� �2
2a31
p2a3

fppðoÞ: ð28Þ

Note that the response is predicted to decrease with increasing structural loss factor, since the peak in the infinite plate

wavenumber sensitivity function decreases with increasing structural loss factor (see Fig. 17).
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Predictions of the mean value response made using Eq. (28) are compared to predictions of the finite plate response in

Fig. 18 for the CCCC case and Fig. 19 for the CCFC case for a speed of 89:4 m=s and varying loss factor. The infinite

plate theory predicts the mean velocity response of the CCCC plate very well for all loss factors considered. The mean

response of the CCFC plate, however, is generally higher than that predicted using infinite plate theory. Even for very

high loss factors, the plate with the free edge still accepts significant energy from the convective terms in the TBL forcing

function. Therefore, using Eq. (28) for predicting the mean response of plates with free edges is not recommended.

4. Summary and conclusions

Analyses of flow-excited vibrations of plates with clamped and free edges were conducted at low Uc=cm (or km=kc)

ratios to examine the relative importance of surface and edge interaction between the plate structural modes and the

TBL wall pressure wavenumber content. Also, approximate forcing function models that represent only the surface

interaction, or low-wavenumber TBL forcing function content (for the fully clamped plate) and the edge interaction, or

convective wavenumber TBL forcing function content (for the plate with a free edge) were evaluated using the analyses.
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Hwang and Maidanik’s (1990) assertion that free edged structures accept significant energy at convective

wavenumbers even at low Uc=cm ratios appears to be correct. Also, the approximate edge force spectrum presented

appears to provide reasonable accuracy for Uc=cm ratios > 0:1 for lightly damped structures. The approximate edge

forcing function does not appear to work as well for heavily damped structures where non-resonant modes excited by

surface interaction effects contribute more to the plate response.

Also as reported by Hwang and Maidanik (1990), clamped plates respond very little to edge forces, and are

dominated by surface interaction (or low-wavenumber) forcing function content. The approximate low-wavenumber

forcing function model therefore appears to work very well for plates with clamped boundary conditions and at low

Uc=cm (or km=kc) ratios. The low-wavenumber forcing function model is not applicable, however, when Uc=cm ratios

approach 1. Structural loss factor does not appear to have a significant impact on the accuracy of the low-wavenumber

forcing function model.

For fully clamped plates and Uc=cm ratios much less than 1, infinite plate theory may be used to generate estimates of

the mean velocity response of finite TBL excited plates. Such estimates should not be used, however, for plates with free

edges.
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Fig. 19. Finite and infinite plate velocity response predictions for CCFC plate at 89:4 m=s; variable loss factors.
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Fig. 18. Finite and infinite plate velocity response predictions for CCCC plate at 89:4 m=s; variable loss factors.

S.A. Hambric et al. / Journal of Fluids and Structures 19 (2004) 93–110 109



The approximate models presented here, although proven useful, should be used with great care. Uc=cm ratios at all

resonances of interest, along with the structural loss factor (and radiation or aerodynamic loss factors, if they are

significant) should be examined carefully to ensure the structural response will not be dominated by effects not modelled

in the approximate forcing functions. In the future, approaches which retain the complete wavenumber content of the

TBL forcing function but that are more computationally efficient should be investigated.
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